An Accelerated Symmetric Nonnegative Matrix Factorization Algorithm Using Extrapolation

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Symmetric Nonnegative Matrix Factorization for Graph Clustering

Nonnegative matrix factorization (NMF) provides a lower rank approximation of a nonnegative matrix, and has been successfully used as a clustering method. In this paper, we offer some conceptual understanding for the capabilities and shortcomings of NMF as a clustering method. Then, we propose Symmetric NMF (SymNMF) as a general framework for graph clustering, which inherits the advantages of N...

متن کامل

On Reduced Rank Nonnegative Matrix Factorization for Symmetric Nonnegative Matrices

Let V ∈ R be a nonnegative matrix. The nonnegative matrix factorization (NNMF) problem consists of finding nonnegative matrix factors W ∈ R and H ∈ R such that V ≈ WH. Lee and Seung proposed two algorithms which find nonnegative W and H such that ‖V −WH‖F is minimized. After examining the case in which r = 1 about which a complete characterization of the solution is possible, we consider the ca...

متن کامل

Accelerated parallel and distributed algorithm using limited internal memory for nonnegative matrix factorization

Nonnegative matrix factorization (NMF) is a powerful technique for dimension reduction, extracting latent factors and learning part-based representation. For large datasets, NMF performance depends on some major issues such as fast algorithms, fully parallel distributed feasibility and limited internal memory. This research designs a fast fully parallel and distributed algorithm using limited i...

متن کامل

Additive Update Algorithm for Nonnegative Matrix Factorization

Abstract—Nonnegative matrix factorization (NMF) is an emerging technique with a wide spectrum of potential applications in data analysis. Mathematically, NMF can be formulated as a minimization problem with nonnegative constraints. This problem is currently attracting much attention from researchers for theoretical reasons and for potential applications. Currently, the most popular approach to ...

متن کامل

New Algorithm for Nonnegative Matrix Factorization Using Givens Parametrization

In this paper, the problem of nonnegative matrix factorization (NMF) is considered. It is formulated as the optimization of a criterion with bound constraints. We propose an approach based on Givens parameterization of some positive vector, and criterion minimization is achieved using Levenberg-Marquardt algorithm. The performance of the developed NMF method is illustrated for the separation of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Symmetry

سال: 2020

ISSN: 2073-8994

DOI: 10.3390/sym12071187